Existence and stability of ground-state solutions of a Schrödinger-KdV system
نویسندگان
چکیده
which arises in various physical contexts as a model for the interaction of long and short nonlinear waves. Ground states of the system are, by definition, minimizers of the energy functional subject to constraints on conserved functionals associated with symmetries of the system. In particular, ground states have a simple time dependence because they propagate via those symmetries. For a range of values of the parameters α, β, γ, δi, ci, we prove the existence and stability of a two-parameter family of ground states associated with a two-parameter family of symmetries.
منابع مشابه
Existence and Stability of Solitons for the Nonlinear Schrödinger Equation on Hyperbolic Space
We study the existence and stability of ground state solutions or solitons to a nonlinear stationary equation on hyperbolic space. The method of concentration compactness applies and shows that the results correlate strongly to those of Euclidean space.
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کاملOrbital stability of ground state solutions of coupled nonlinear Schrödinger equations
In this paper orbital stability of solutions of weakly coupled nonlinear Schrödinger equations is studied. It is proved that ground state solutions-scalar or vector ones-are orbitally stable, while bound states with Morse index strictly greater than one are not stable. Moreover, an instability result for large exponent in the nonlinearity is presented.
متن کامل